
International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021 1067

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

A Reseach study on importance of Testing
and Quality Assurance in Softwate

Development life cycle (SDLC) Models
 [1] Muhammad Junaid, [2] Saleem Zubair Ahmed

 [1] Department of Software Engineering the Superior College, Lahore 54700 Pakistan.

 [2] Department of Software Engineering the Superior College, Lahore 54700 Pakistan.

 [1] Junaidchoudhry12340@gmail.com [2] saleem.zubair@superior.edu.pk

Abstract— nearly all of the software development metrics that are in use today focus on later stages, such as development and testing. How-
ever, initial bug detection throughout the SDLC (software development lifecycle) can greatly affect collaboration efficiency, spending less
time fixing bugs later and more time preventing them. Additionally, subsequent rework increases the cost of quality and wastes additional
time on the development team. The concept of quality is also included in the domain of software development, where it is important to thor-
oughly validate a software system at various levels of testing. Competition is fierce today and business and platform requirements change
frequently, so support and updates must be based on current requirements for long-term and stable use of the software. Software testing is
one of the complex activities that any organization undertakes to ensure the value and quality that ensures the viability of software products
on the market. This document describes the concept of testing and its role in quality assurance, test cases and test levels, and how tests and
tests are planned, implemented, and monitored. The purpose of this overview is to study the current SDLC classification. Initially characterize
a set of quality indicators for the software process. In this paper we organized a systematic review that associates with time, cost, challenges
and quality of the software product with the SDLC phase.

Keywords—SDLC, Quality metrics, Classification of SDLC, Testing techniques, Importance of SDLC throught cycle

—————————— ——————————

1 INTRODUCTION

Software development practices have been progressing in the
past eras. Some Agile practices have been developed in the
past few decades that evolve the theory of SDLC and their
implementation methods. SDLC is basically defined as the
time that could be mandatory for activities that are used
throughout the whole process such as defining the project,
development of that project, testing of that project, delivery,
maintenance and feedback etc. the development crew’s effi-
ciency and the quality of the software vary on the usefulness
of analyzing and defining the Software throughout then whole
process. Initial imperfections discovery can be a key of a suc-
cessful, interactive and effective project. Though, its phase’s
classification depends on the practices of company’s concerns.
Company preferences decides the techniques that are used for
evaluation and measuring the quality of Software process.
However the set of methodologies that can be traced through-
out the evaluation procedure may vary on different concerns.
This paper presents the division of SDLC phases, some eval-
uation practices and different measurements that are existed
to test the quality of software. That’s why we agreed to organ-
ize a systematic literature on SDLC process. This research fur-
ther guide us in many different ways such as process methods,
development stages, methods to detect the efficiency of pro-
cess etc. In order to further start our research we have led re-
search requirements and questions figured by regarding fol-
lowing queries:

RQ1: In which categories Software development life Cycle
phase can be divided?

RQ2: what are the current ways to test quality of software in
initial phases?

RQ3: what executions are needed in SDLC phases?

RQ4: Throughout the SDLC phase, what measures are re-
quired?

2 RELATED WORK

The author Gelperin et al [10] presents the work based on the

development of software test engineering. This was tracked by

looking at conversions in the testing cycle model and expertise

level over the long haul. Binary stage models, for example du-

al life cycle modes i.e. the evolution and prevention models, ,

the stock and failure models, have been proposed in order to

delineate the development of software testing. Hamlet et al.

[11] give more extensive models and more exact outcomes on

the connection between partition likelihood, effectiveness and

failure rate. In their article, Vishwas Massey and K.J. Satao [12]

compares the performance of different SDLC models and sug-

gests new models to improve performance. However, none of

the articles compares the search method with the Software de-

velopment life cycle process. Richardson and Malley [13] pre-

sented the first methods of using specifications to select a test

case. They proposed specification-based test methodologies,

expanding the wide range of implementation-based test meth-

ods for application to official specification language. Madjski

Leh [14] and his colleagues introduced the concept of using a

set of secondary variables and its application to largescale ac-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021 1068

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

cessible software with a variety of procedures. The author fur-

ther demonstrated that secondary mutagenesis techniques can

meaningfully enhance the productivity of mutation testing at

the cost of testing intensity. Authors who are confident that

partition tests are likely to detect flaws at least have the cost of

reducing their comparative advantage over randomized tests.

In [15] authors analyzed the maturity of their knowledge of the

test methods. To this end, they reviewed current empirical re-

search on test methods. To the best of their knowledge, they

ranked the test methods and parameters chosen for

comparison.

3 RESEARCH METHODOLOGY

We conducted systematic study in order to get the detailed

information about SDLC and its quality experience in terms of

cost and time. For this purpose, we picked out some research

questions on SDLC phases and their matric to carry out the

evaluation of related information so as to achieve our focus

towards this study.

we surveyed the [1] framework study formation in order to

observe the much appropriate and applicable literature that

can be expected. onwards we utilize explicit inclusion and

exclusion criteria rules for getting to likely essential

investigation. The main focus of this study is to get data

regarding present types of stages in SDP(Software

development Process) in assortment SDLC for primary study.

After that we'll talk about the literature terms of value to assess

the primary study. we have led research requirements and

questions figured by regarding above queries mentioned in

Introduction.

These part depicts the arrangement of actions executed to

address the formed research question throughout this SLR. In

the beginning, the methodology was characterized by

regulating the search boundaries to practice for search system.

search boundary incorporate "Software Development Life

Cycle Phases and quality measurements” and the other is

"Software improvement initial life cycle stages and

measurements" . As Kitchenham Achimugu [1] Says, we

utilized upgrades procedure of determining significant

terminologies from the exploration questions. Diverse data

bases were chosen in order to select different research papers

in terms of enhance the information regarding SDLC phases

and quality measurements. The search terms are following.

• Google Scholar

• Research gate

• Springer

• IEEE

• Science hub

We get a yield of in excess of 300 distributions that were

accessible in open source libraries that are recorded previously.

The consequences of the pursuit terms were arranged into an

primary selected concentrates as per the determination

guidelines that is proposed in [2]. The methodology

incorporates a few stages to direct a subjective appraisal of the

distributions. The research is distributed in three phases, in the

beginning the underlying arrangement of distributions are

selected with programmed and manual search procedures. In

the Second step, research papers and related articles were

selected as primary search as indicated by their keywords,

abstract, title and conclusion.in the last and third step , the

primary search were formerly checked in a subtleties by

completely auditing the articles. By considering the fact that

that the area of initial phases of SDLC isn't completely

investigated at this point. Throughout the SLR, we have put In

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021 1069

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

the exclusion criteria in order to get rid of duplications and

those studies which are not completed yet as well as irrelevant

articles. . The studies and articles that don't address definite

partition of phases of SDLC were excluded.

3.1 Data Collection Assessment

Because of the previously mentioned choice standards, the

main choice of studies was led. The primary selection of stud-

ies contains a series of keywords addition into information

sources. Accordingly, we gathered in excess of 300 publica-

tions. The distribution is shown in fig 2. 56% distributions from

Google Scholar, 32% publications from Research Gate, whereas

12% distributions from IEEE and 34% publications from Sci-

ence hub, an open source as some of the articles were not open

as free use.

In the initial step of studies determination as indicated by

abstract and title, just 32% of studies were acknowledged and

7% were abolished for the reason of duplications. The follow-

ing stage were led by perusing the entire distribution with sub-

tleties.

3.2 Result Section

This Organized Analysis evaluate Software measurements,

prototypes and techniques in the direction of evaluation and

investigate the quality of software in initial stages, mainly fo-

cused on Design prototypes and Requirements management of

SDLC. Along with the primary emphasis continued through

embeddings exploration towards open-source information col-

lections, to some extent more than 300 distributions were cho-

sen. Though, next emphasis was based on investigation of Ti-

tle, Keywords and Abstract. We arranged 75 essential examina-

tions identified with our subject of revenue. In the wake of fil-

tering basically chosen concentrates entire substance in detail,

they were arranged from 0-1scale as binary measure in the re-

quest for relevance where 0 indicates “not relevant” and 1 pre-

sents the information that is relevant. However 9.11% composi-

tions were excluded because of the reason of duplication.

4 RESULTS AND DISCUSSIONS

This Unit presents the results of detailed survey. By con-

ducting the current Software development life Cycle process

beginning stages, systems and measurements to survey and

assess the nature of the software, we have responded to each of

the four exploration questions.

RQ1: In which categories SDLC phases can be divided?

Throughout this Systematic study, we characterized an

overall arrangement of stages and a set of measurements that

are appropriate to follow the investigation of quality of soft-

ware; testing of Software [9], of design [17], or overall models

[14], likewise thinking about the cycle to gather [6–10], the con-

cealed software Prototype [5-9], the objective framework [21-

26], their utilization in forming prototypes [2, 25-29],. By and

large, practically the entirety of the examinations expounded

software life initial stages into Requirements .The executives

and Design stage, and once in a while Code. The distributions

weight addressing the distinct primary stages of programming

life is portrayed in the accompanying rundown: Requirements

stage – 22.2% , Requirements and Design stages – 17.9% , De-

sign – 38.7%, Design and Code stages – 6.7% ,Code and Testing

stages – 4.6% , All stages – 20.0% .However, a portion of the

papers characterized periods of software metrics in a certain

way. As the paper [37] characterizes the SDLC process initial

stages incorporates the Classification of the Software solution

preliminary Design, User Requirements Analysis and the Pe-

ripheral Performance Classification. Though, the initial triple

phase’s association is known as the Requirements phase. The

situation comprises the multitude of activities throughout the

deterioration of the product design parts. Although, scholars in

[22] set up common SDLC initial stages that are described in

the following:

• Initial Planning stage - the specialized and monetary rea-

son for the undertaking ought to be set up

• Analysis - the practical exhibition prerequisites for the

Software design issues are characterized. This current stage's

outcome is the productive conclusion of PDR which is the ab-

breviation of Preliminary Design Review

• Prototype – The mentioned stage incorporate the portion

of prerequisites to software development segments and finish-

es by means of CDR known as complete Critical Design Re-

view

In the context of above circumstances, analysis and testing

stages are expressed in [35] which followed to requirement

Management stage as indicated by the exercises continued dur-

ing these stages.

RQ2: what are the current ways to test quality of software

in initial phases?

Specifically, a few investigations plus different studies rec-

ommending various models or ways to deal with evaluation

and testing the quality of Softwrae in initial stages. Aversano et

al. presented the requirement documentation, in this way the

complete evaluation of the credentials of ERP, which is an open

source frameworks to comprehend the great citations. The au-

thors divided the quality of Software as far as two perspectives:

the first one is Structure Quality and the other one is called

Content Quality. The article demonstrates the records are made

out of reports that are related to different, APIs. Basically the

researcher recommends the Information Extraction for quality

assessment. Furthermore, Information Retrieval methods are

suggested to create an impartial research [37]. The researchers

essentially suggested three ERP frameworks: the first one is

Open bravo, the subsequent framework is Compere and the

next one is known as Dampier in order to acquire outcomes.

The author [39], proposes different quantitative measures in

order to match up with the requirement details in addition oth-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021 1070

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

er mechanized instruments like Ada, SREM, ISDOS, SADT and

so on. Whereas the CAME (Computer Assisted Software

Measurement and Evaluation) apparatuses are basically the

devices for demonstrating and deciding the measurements of

development of software parts mentioning toward the metrics.

By and by, the CAME apparatus region additionally incorpo-

rates the devices for model-based software development com-

ponent measurements presentation, introduction of estimation

findings, factual investigation and assessment [38]. However

the Service Oriented Requirements Traceability Tool (SORTT)

creators built up a model device in the direction of measure

automation of a single or multiple process. In other words the

tool presets or automates the indexing, filtering, querying and

some translating and so on. That One motivation is to moder-

ate issues, for example, effort, time for mining evidence linkag-

es [37].

A portion of the research interpret a few bunching investi-

gation methods to calculate the quality of software like k-

means and fuzzy c-means, fuzzy mean and so on [12], [40-47]

RQ3: what executions are needed in SDLC phases?

The execution that are needed during the phase of SDLC

are some arranged actions throughout the various period of

development process. Though, few examinations have incor-

porated the total presentation of actions that had better to be

possible throughout the referenced stages. At this time, there

are a few articles containing data about the activities of the

mentioned stages. As indicated by [22], the scientific categori-

zation of beginning stages incorporates stages and activities

incorporate System requirements, user analysis, System pre-

requisites, System Design. By and large, the Software devel-

opment stages include “Requirements Analysis and Definition,

and Design stages” [35]. System Analysis plus Definition stage

includes exercises similar to prerequisites evocation, require-

ment investigation, requirement approval, and feasibility study

and requirement documentation. Design stage involves various

activities, in which the general framework design is set up.

This stage includes a few exercises like inspecting the require-

ments record, picking the architectural plan technique, picking

the programming language, verifying, indicating, document

design exercises.in the last, we know how to contend that the

actions throughout the periods of software measure which rely

upon the kind of assessment technique and the quality meas-

urement the organization pick. Notwithstanding, the exercises

throughout the overall stages are given as the outcomes from

the few concentrates in this segment above.

RQ4: Throughout the SDLC phase, what measures are re-

quired?

SDLC software measures are generally corelated with un-

certainty in probability that further evaluated FST [49]. The

researcher [52] argues that this measure can be evaluated by set

theory in order to capture the uncertainty. The similar ap-

proach is defined in other studies that characterize the stages

and measurements of SP is described in [45] [32][21]. The au-

thor [37] directed an exact approval of Object Oriented meas-

urements known as (OO) which is Object oriented analysis and

plan technique. The reserchers talked about the connection

among Chidamber and Kemerer's OO measurements plus

Fault Probability in different stages of the life cycle. Essentially,

the author[47] recommends a prototype for the deformity dis-

covery presents in initial phases of SDLC such as plan and

initial coding stages know how to be pre-characterized with the

complexity and cohesion (CCC) related measures and cou-

pling.

As the author [60] presents the reliability of framework

which be capable of chosen by way of planning the prototype.

Likewise in [16], the key variables that are involved in re-

quirements of user activity in the executive’s stage were char-

acterized as reliability, reaction time, UI, functioning and de-

pendability. Whereas the primary variables of user interest

incorporate development time, cost, functions performed,

modifiability, reliability, maintainability and dependability.

However [42] anticipates that the reliability cannot be predict-

ed because of the reason of computational complexity.

Throughout the study, we have gathered some measure-

ments, regardless, known as McCabe, the other one is known

as Halstead, some known as Cyclomatic Complexity and prin-

cipally the CK measurements were the well known matrices

that were referenced in larger part of chosen studies [40-55].

Plus, numerous investigations have been focused on measure-

ments deduction dependent on various perspectives. Mostly

Researchers were focused on Module Complexity, Functionali-

ty and their maintainability.

As we expressed from the earliest preliminary point, the

point of this SLR is to characterize and assess the strategies,

their relating measurements and the beginning stages to lead

appraisal and assessment of nature of the Software cycle. Re-

search inquiries that is analyzed to characterize the grouping of

the SDLC stages, the current prototypes for quality of software

in beginning stages, actions which executed throughout the

mentioned stages and measurements. First and foremost, we

characterized an overall arrangement of stages and accommo-

dating measurements be situated related to the broadly utilized

prototypes like Agile techniques. Some of them known as Spi-

ral, waterfall etc. Constraints of exploration is that we grabbed

the overall order of SDLC stages instead of grouping them into

Spiral and Agile etc. In spite of the way the agile technique

stages are acted in a brief phase and sequentially rather than

Waterfall prototype. Aftereffects of SLR has demonstrated that

80.0% of the examinations show Design stage and Require-

ments Management as beginning stages of programming im-

provement measure. Additional, numerous strategies subsists

in terms of survey the quality of Software like: CAME, CCCC,

etc. The utilization of Machine Learning approaches [21] inves-

tigation of specific modules to examine complexity, usefulness

and workability. Some of the exploration contemplates deci-

pher a few bunching investigation methods to anticipate pro-

gramming measurements quality like k-mean, Gaussian com-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021 1071

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

bination model, fuzzy c-mean, and so on. To summarize, chose

measurements give more bits of knowledge whether the essen-

tial estimation is effectively followed and investigated.

5 CONCLUSION

Taking everything into account, an efficient project attains the

expertise of trace, track and control of the software develop-

ment process all through the SDLC. To keep up the consistent

speed of software development and timing, one necessities to

gauge the software interaction as right on time as could really

be expected. Generally, the beginning stages incorporate neces-

sities the design phase and requirement management. The

measurements can change contingent upon the philosophy and

the objective of the organization. The upcoming works toward

this path will be situated the further conversation of Probabil-

ity, Uncertainty level. Some of the experiment on the valuable

and working techniques to lead the quality of software assess-

ment measure. According to Benjamin “The bitterness of poor

quality remains long after the sweetness of low price is forgot-

ten”. Accordingly, one ought to never postpone in assuring the

interaction quality that will prompt a resulting item.

References

[1] Ragunath, P.K., et al., Evolving a new model (SDLC Model-2010) for

software development life cycle (SDLC). International Journal of
Computer Science and Network Security, 2010. 10(1): p. 112-119.

[2] Rani, S.B.A.S.U., A detailed study of Software Development Life
Cycle (SDLC) models. International Journal Of Engineering And
Computer Science, 2017. 6(7).

[3] Osterweil, L., Strategic directions in quality of software. ACM
Computing Surveys (CSUR), 1996. 28(4): p. 738-750.

[4] Jamil, M.A., et al. Software testing techniques: A literature review.
IEEE.

[5] Amland, S., Risk-based testing:: Risk analysis fundamentals and
metrics for software testing including a financial application case
study. Journal of Systems and Software, 2000. 53(3): p. 287-295.

[6] Redmill, F., Theory and practice of risk-based testing. Software
Testing, Verification and Reliability, 2005. 15(1): p. 3-20.

[7] Bhatt, D., A Survey of Effective and Efficient Software Testing
Technique and Analysis. Iconic Research and Engineering Journals
(IREJOURNALS), 2017.

[8] Bertolino, A. Software testing research: Achievements, challenges,
dreams. IEEE.H

[9] Gelperin, D. and B. Hetzel, The growth of software testing.
Communications of the ACM, 1988. 31(6): p. 687-695.

[10] Hamlet, D. and R. Taylor, Partition testing does not inspire
confidence (program testing). IEEE Transactions on Software
Engineering, 1990. 16(12): p. 1402-1411.

[11] Kaur, M. and R. Singh, A Review of software testing techniques.
International Journal of Electronic and Electrical Engineering, 2014.
7(5): p. 463-474.

[12] Richardson, D., O. O'Malley, and C. Tittle. Approaches to
specification-based testing.

[13] Madeyski, L., et al., Overcoming the equivalent mutant problem: A
systematic literature review and a comparative experiment of second
order mutation. IEEE Transactions on Software Engineering, 2013.
40(1): p. 23-42.

[14] Juristo, N., A.M. Moreno, and S. Vegas, Reviewing 25 years of testing
technique experiments. Empirical Software Engineering, 2004. 9(1-2):
p. 7-44.

[15] Whittaker, J.A., What is software testing? And why is it so hard?
IEEE software, 2000. 17(1): p. 70-79.

[16] Claessen, K. and J. Hughes, QuickCheck: a lightweight tool for
random testing of Haskell programs. Acm sigplan notices, 2011.
46(4): p. 53-64.

[17] Harrold, M.J. and G. Rothermel, Performing data flow testing on
classes. ACM SIGSOFT Software Engineering Notes, 1994. 19(5): p.
154-163.

[18] Mouratidis, H., P. Giorgini, and G. Manson, When security meets
software engineering: a case of modelling secure information
systems. Information Systems, 2005. 30(8): p. 609-629.

[19] Ahmad, Z., et al., Implementation of Secure Software Design and
their impact on Application. International Journal of Computer
Applications, 2015. 120(10).

[20] Shoemaker, D. and N.R. Mead, Evaluating Software Assurance
Knowledge and Competency of Acquisition Professionals. 2014,
CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE
ENGINEERING INST.

[21] Offutt, J., Quality attributes of web software applications. IEEE
software, 2002. 19(2): p. 25-32.

[22] Pohl, C. and H.-J. Hof, Secure scrum: Development of secure
software with scrum. arXiv preprint arXiv:1507.02992, 2015.

[23] Shreyas, D. Software engineering for security: Towards architecting
secure software.

[24] Saba, T., et al., Annotated comparisons of proposed preprocessing
techniques for script recognition.

[25] eural Computing and Applications, 2014. 25(6): p. 1337-1347.

[26] Essafi, M. and H.B. Ghezala, Meta-modeling based secure software
development processes. International Journal of Secure Software
Engineering (IJSSE), 2014. 5(3): p. 56-74.

[27] Devanbu, P.T. and S. Stubblebine. Software engineering for security:
a roadmap.\

[28] Shin, M.E. and H. Gomaa, Software requirements and architecture
modeling for evolving non-secure applications into secure
applications. Science of Computer Programming, 2007. 66(1): p. 60-
70.

[29] Arbain, A.F., I. Ghani, and S.R. Jeong, A systematic literature review
on secure software development using feature driven development
(FDD) agile model. Journal of Internet Computing and services, 2014.
15(1): p. 13-27.

[30] McGraw, G., Software security. IEEE Security & Privacy, 2004. 2(2):
p. 80-83.

[31] Wongthongtham, P., et al., Development of a software engineering
ontology for multisite software development. IEEE Transactions on
Knowledge and Data Engineering, 2008. 21(8): p. 1205-1217.

[32] Bukhari, Z., J. Yahaya, and A. Deraman, A Conceptual Framework
for Metrics Selection: SMeS. International Journal on Advanced
Science, Engineering and Information Technology, 2018. 8(6): p. 2294-
2300.

[33] Jones, R.L. and A. Rastogi, Secure coding: building security into the
software development life cycle. Inf. Secur. J. A Glob. Perspect., 2004.
13(5): p. 29-39.

[34] Daud, M.I. Secure software development model: A guide for secure
software life cycle.

[35] Bokhari, M.U. and S.T. Siddiqui, TSSR: a proposed tool for secure
software requirement management. International Journal of
Information Technology and Computer Science (IJITCS), 2014. 7(1):
p. 1.

[36] Nodehi, A., et al., Intelligent fuzzy approach for fast fractal image
compression. EURASIP Journal on Advances in Signal Processing,
2014. 2014(1): p. 112.

[37] Islam, S. and P. Falcarin. Measuring security requirements for
software security. IEEE.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 2, February-2021 1072

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

[38] Islam, S., H. Mouratidis, and J. Jürjens, A framework to support
alignment of secure software engineering with legal regulations.
Software & Systems Modeling, 2011. 10(3): p. 369-394.

[39] McGraw, G., Building secure software: A difficult but critical step in
protecting your business. Cigital, White Paper, available at:
http://www. cigital. com/whitepapers, 2003.

[40] Khan, A.A., S. Basri, and P.D.D. Dominic. A propose framework for
requirement change management in global software development.
IEEE.

[41] Niazi, M., et al., GlobReq: A framework for improving requirements
engineering in global software development projects: Preliminary
results. 2012.

[42] Jiménez, M., M. Piattini, and A. Vizcaíno, Challenges and
improvements in distributed software development: A systematic
review. Advances in Software Engineering, 2009. 2009.

[43] Lopez, A., J. Nicolas, and A. Toval. Risks and safeguards for the
requirements engineering process in global software development.
IEEE.

[44] Gomes, V. and S. Marczak. Problems? We all know we have them.
Do we have solutions too? A literature review on problems and their
solutions in global software development. IEEE.

[45] Harikesh Bahadur Yadav and Dilip Kumar Yadav. Construction of
membership function for software metrics. Procedia Computer
Science, 46:933–940, 2015.

[46] Bingbing Yang, Qian Yin, Shengyong Xu, and Ping Guo. Quality of
software prediction using affinity propagation algorithm. In 2008
IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence). IEEE, June 2008.

[47] Fred van den Bosch, John R. Ellis, Peter Freeman, Len Johnson,
Carma L. McClure, Dick Robinson, Walt Scacchi, Ben Scheff, Arndt
von Staa, and Leonard L. Tripp. Evaluation of software development
life cycle. ACM SIGSOFT Software Engineering Notes, 7(1):45–60,
January 1982.

[48] Chandan Kumar and Dilip Kumar Yadav. A method for developing
node probability table using qualitative value of software metrics. In
Proceedings of the 2015 Third International Conference on
Computer, Communication, Control and Information Technology
(C3IT). IEEE, February 2015.

[49] Pongtip Aroonvatanaporn, Thanida Hongsongkiat, and B. Boehm.
Improving software development tracking and estimation inside the
cone of uncertainty. 2012.

[50] Wouter Tengeler. Cone of uncertainty for agile projects, 2014.
Online: http://www.themotionstudio.nl/en/cone-of-uncertainty-for-
agile-projects/, on 5th feb 2021.

[51] Stefan Luyten. The cone of uncertainty and how to avoid it turning
into a wormhole, 2014. Online:
https://medium.com/@stefanluyten/the-cone-of-uncertainty-
82d21e99fcc2, on 5th feb 2021.

[52] V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-
oriented design metrics as quality indicators. IEEE Transactions on
Software Engineering, 22(10):751–761, 1996.

[53] Prathipati Ratna Kumar and G.P Saradhi Varma. A novel
probabilistic-ABC based boosting model for software defect
detection. In 2017 International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS).
IEEE, March 2017.

[54] R. Bharathi and R. Selvarani. A framework for the estimation of oo
software reliability using design complexity metrics. In 2015
International Conference on Trends in Automation, Communications
and Computing Technology (I-TACT-15), pages 1–7, 2015.

[55] Dewanne M. Phillips, Thomas A. Mazzuchi, and Shahram Sarkani.
An architecture, system engineering, and acquisition approach for
space system software resiliency. Information and Software
Technology, 94:150–164, February 2018.

[56] R Bharathi and R. Selvarani. A framework for the estimation of OO
software reliability using design complexity metrics. In 2015
International Conference on Trends in Automation, Communications
and Computing Technology (I-TACT-15). IEEE, December 2015.

[57] Narimane Zighed, Nora Bounour, and Abdelhak-Djamel Seriai.
Comparative analysis of object-oriented software maintainability
prediction models. Foundations of Computing and Decision
Sciences, 43(4):359– 374, December 2018.

[58] Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow. Comparing
design and code metrics for quality of software prediction. In
Proceedings of the 4th international workshop on Predictor models
in software engineering - PROMISE '08. ACM Press, 2008.

[59] Sun-Jen Huang and Richard Lai. Deriving complexity information
from a formal communication protocol specification. Software:
Practice and Experience, 28(14):1465–1491, December 1998.

[60] Jindal, T. (2016). Importance of Testing in SDLC. International
Journal of Engineering and Applied Computer Science (IJEACS),
1(02), 54-56.

IJSER

http://www.ijser.org/

